An Improved Ångström-Type Model for Estimating Solar Radiation over the Tibetan Plateau
نویسندگان
چکیده
For estimating the annual mean of daily solar irradiation in plateau mountainous regions, observed data from 15 radiation stations were used to validate different empirical estimation methods over the Tibetan Plateau. Calibration indicates that sunshine-based site-dependent models perform better than temperature-based ones. Then, the highly rated sunshine-based Ångström model and temperature-based Bristow model were selected for regional application. The geographical models perform much better than the average models, but still not ideally. To achieve better performance, the Ångström-type model was improved using altitude and water vapor pressure as the leading factors. The improved model can accurately predict the coefficients at all the stations, and performs the best among all models with an average Nash-Sutcliffe Efficiency value of 0.856. Spatial distribution of the annual mean of daily solar irradiation was then estimated with the improved model. It is indicated that there is an increasing trend of radiation from east to west, with a great center of the annual mean of daily solar irradiation on southwest Tibetan Plateau ranging from 20 to 24 MJ·m−2. The improved model should be further validated against observations before its applications in other plateau mountainous regions.
منابع مشابه
Estimation of Daily Solar Radiation Budget at Kilometer Resolution over the Tibetan Plateau by Integrating MODIS Data Products and a DEM
Considering large and complex areas like the Tibetan Plateau, an analysis of the spatial distribution of the solar radiative budget over time not only requires the use of satellite remote sensing data, but also of an algorithm that accounts for strong variations of topography. Therefore, this research aims at developing a method to produce time series of solar radiative fluxes at high temporal ...
متن کاملImpact of 3-D topography on surface radiation budget over the Tibetan Plateau
The 3-D complex topography effect on the surface solar radiative budget over the Tibetan Plateau is investigated by means of a parameterization approach on the basis of “exact” 3-D Monte Carlo photon tracing simulations, which use 90 m topography data as building blocks. Using a demonstrative grid size of 10×10 km, we show that differences in downward surface solar fluxes for a clear sky withou...
متن کاملEstimating and modeling monthly mean daily global solar radiation on horizontal surfaces using artificial neural networks
In this study, an artificial neural network based model for prediction of solar energy potential in Kerman province in Iran has been developed. Meteorological data of 12 cities for period of 17 years (1997–2013) and solar radiation for five cities around and inside Kerman province from the Iranian Meteorological Office data center were used for the training and testing the network. Meteorologic...
متن کاملRadiative transfer in mountains: Application to the Tibetan Plateau
[1] We developed a 3D Monte Carlo photon tracing program for the transfer of radiation in inhomogeneous and irregular terrain to calculate broadband solar and thermal infrared fluxes. We selected an area of 100 100 km in the Tibetan Plateau centered at Lhasa city and used the albedo and surface temperature from MODIS/Terra for this study. We showed that anomalies of surface solar fluxes with re...
متن کاملDoes the climate warming hiatus exist over the Tibetan Plateau?
The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998-2013 (0.25 °C decade(-1)), compared with that during 1980-1997 (0.21 °C decade(-1)). Further re...
متن کامل